
Wire Cell Software Overview
(plus some data structure basics)

Brett Viren
Physics Department

BNLIF Wire Cell Team
2015 April 2

Outline

Source Code

Names

Packages

Tests

Build

Documentation

Tour of Wire Cell

Container Data Structures (for Xin)

Brett Viren (BNL) Wire Cell April 2, 2015 2 / 33

Source Code

Repositories

All our Wire Cell source code is in the “BNLIF” GitHub
organization.

The main repository is:

https://github.com/BNLIF/wire-cell

See full list or repositories at

https://github.com/BNLIF

Not all repositories in BNLIF are for Wire Cell.

Brett Viren (BNL) Wire Cell April 2, 2015 3 / 33

https://github.com/BNLIF/wire-cell
https://github.com/BNLIF

Names

Source Code

Names

Packages

Tests

Build

Documentation

Tour of Wire Cell

Container Data Structures (for Xin)

Brett Viren (BNL) Wire Cell April 2, 2015 4 / 33

Names

Package Names

A high-level naming convention is used:

source package wire-cell-<name> used to name source
repositories.

source subdir <name> sub-directory location in a build package
of a source package (more on this below).

binary package WireCell<Name> used in expressing
dependencies between packages and to name the
public API header directory.

The source package/subdir names are somewhat unimportant
but the binary package name gets baked to a few places.

Brett Viren (BNL) Wire Cell April 2, 2015 5 / 33

Names

Namespaces

C++ namespaces:
units the system of units taken from CLHEP

(more on this next).
WireCell all “core” C++ library code should be in this

namespace. Don’t add redundant “WireCell” name
to class/function names themselves.

WireCellXxx hold any code which bridges “WireCell” and
some external code base.

Example of the last one: WireCellSst “glues” in the “simple
simulation tree” (aka “celltree”) data access.

Brett Viren (BNL) Wire Cell April 2, 2015 6 / 33

Names

System of Units
#include "WireCellData/Units.h"
int distance1 = 2.5*units::meter;
int distance2 = 10.0*units::meter;
cout << "The area is "

<< distance1*distance2/units::centimeter2
<< " square centimeters" << endl;

Rules:
1 Do not “care” about a variable value’s unit as long as it is in

the system of units.
2 Every bare, literal number should have a unit multiplied.
3 To express a value in an explicit unit divide by the unit.
4 If you really really must store an explicit unit in a variable the

pick a variable name that implies the unit. (but, try to avoid
this)

// avoid all these cases!
float energyCutMeV = 50; // bad, but at least name has unit
float angle_radians = some_angle / units::radian;
float pi_radians = 180.0*units::degree / units::radian;

Brett Viren (BNL) Wire Cell April 2, 2015 7 / 33

Packages

Source Code

Names

Packages

Tests

Build

Documentation

Tour of Wire Cell

Container Data Structures (for Xin)

Brett Viren (BNL) Wire Cell April 2, 2015 8 / 33

Packages

Source Package Types

Wire Cell has two basic source package types:
code holds code for shared libraries, applications, tests,

etc (most common)
build includes one ore more code packages via “git

submodule” method (just one now: wire-cell)
You will mostly create and add to code packages.

Brett Viren (BNL) Wire Cell April 2, 2015 9 / 33

Packages

Code Package

• A code package holds the code to produce various build products.

• The build system assumes intent based on layout conventions:

src/ source code (and private headers) for shared library

inc/WireCellName/ public headers for shared library API.

dict/LinkDef.h export API to ROOT dictionary.

tests/ unit tests (more on these below)

apps/ main programs, one *.cxx per app.

python/WireCell/<Name> python modules (not yet supported in build)

wscript build simple file hooking into the build system.

Entire package build file is one line (examples/wscript build)

bld.make_package("WireCellExamples",
use="WireCellNav WireCellData WireCellTiling WireCellSst")

Brett Viren (BNL) Wire Cell April 2, 2015 10 / 33

Packages

Current Packages
Roughly in order of increasing dependency:

data common data classes.

nav data navigation (geometry, frames (“events”) and time slices)

sst provides frame and geometry data source classes for “simple
simulation tree” (aka “celltree”) and accompanying wire
geometry.

tiling things that produce or modify a cell tiling, includes initial,
reference implementation based on Michael’s CellMaker (also
available in that packages as an application.

examples a growing set of example applications, python code, etc. Useful
source of starting points.

matrix Xin’s nascent area.

(top) top level directory, source code aggregation, doxygen, and
build package. (the wire-cell source package)

(labels are source subdirectory names)

Brett Viren (BNL) Wire Cell April 2, 2015 11 / 33

https://github.com/BNLIF/wire-cell-data
https://github.com/BNLIF/wire-cell-nav
https://github.com/BNLIF/wire-cell-sst
https://github.com/BNLIF/wire-cell-tiling
https://github.com/BNLIF/wire-cell-examples
https://github.com/BNLIF/wire-cell-matrix
https://github.com/BNLIF/wire-cell

Tests

Source Code

Names

Packages

Tests

Build

Documentation

Tour of Wire Cell

Container Data Structures (for Xin)

Brett Viren (BNL) Wire Cell April 2, 2015 12 / 33

Tests

Tests Overview
Let’s write well tested code!

• You already write little tests when you write code

• (unless you are superman).

• So, write them in a useful form from the start and keep them around:

• Gives lots of examples how to use the code.
• Makes it safer to attempt needed changes to your code or others.
• Running tests can be (and is) automated so you can write once and

then forget about them (until they fail)

• One challenge: tests take no arguments

• need to run same everywhere so no outside info
• leads to needing to mock up some things which can take extra effort
• if too hard, then write an application to hold your test and write

instructions how to exercise it.

• You can write tests in C++ or Python or Shell.

No excuses, write tests!
Brett Viren (BNL) Wire Cell April 2, 2015 13 / 33

Tests

Guidelines for Writing Useful Tests

• Write many, small tests:
• Make each test just one thing.
• Limit the time any one test takes to run.
• Strive for complete testing coverage of your package.

• Don’t worry about test-code quality, quick-and-dirty is
better than non-existent.

• Be conscious of dependencies
• don’t let test code determine package dependencies
• make a new package just for tests if needed

It is better to write tests than to follow guidelines!

Brett Viren (BNL) Wire Cell April 2, 2015 14 / 33

Tests

C++ Tests

• Mini application but no command line arguments allowed.
• Place code in tests/test *.cxx

• Auto-(re)built and (re)run as needed, not installed.

// test_fail.cxx
int main(/*empty!*/) {
exit(1); //

}

// test_succeed.cxx
int main(/*empty!*/) {
return 0;

}

Brett Viren (BNL) Wire Cell April 2, 2015 15 / 33

Tests

Python tests

• Form of one or more unit test functions per Python file.
• Place code in tests/test *.py

• Follow naming and the no-argument calling convention
• Automated running not yet added to build system

tests/test_fail_succed.py

def test_fail(): # name starts with test_
"A test that always fails."
raise RuntimeError

def test_succeed(): # function takes no args
"A test that always succeeds."
return

Brett Viren (BNL) Wire Cell April 2, 2015 16 / 33

Tests

Shell tests

• Form of an open-ended shell script, no cmd line arguments
• Run package’s application(s) or those from other packages

on which the package depends.
• Place code in tests/test *.sh

• Automated running not yet added to build system

#!/bin/bash
set -e # fail early, fail often!
wd=$(mktemp -d)
cd $wd
wget https://raw.githubusercontent.com/BNLIF/wire-cell-event/master/geometry/ChannelWireGeometry.txt
sst-geom-dumper ChannelWireGeometry.txt
rm -rf $wd # clean up

Note: we need to deal better with auxiliary data files and not rely on
downloads from GitHub like this example. Maybe start depending on SQLite3
for simple database features.

Brett Viren (BNL) Wire Cell April 2, 2015 17 / 33

Build

Source Code

Names

Packages

Tests

Build

Documentation

Tour of Wire Cell

Container Data Structures (for Xin)

Brett Viren (BNL) Wire Cell April 2, 2015 18 / 33

Build

Installation Overview

1 Provide external packages (mostly ROOT6)
• Automated externals installation method provided or,
• You are free to DIY

2 Set up your run-time environment.
• Automated installation provides two strategies
• DIY’ers must continue to DIY

3 Build Wire Cell code itself (details next)

Note: automated externals installation method details here:

https://github.com/BNLIF/wire-cell-externals

Brett Viren (BNL) Wire Cell April 2, 2015 19 / 33

https://github.com/BNLIF/wire-cell-externals

Build

Building Wire Cell

Prepare the source area

git clone git@github.com:BNLIF/wire-cell.git
cd wire-cell
git submodule init
git submodule update
alias waf=‘pwd‘/waf-tools/waf

Configure, build and install:

waf --prefix=/path/to/install configure build install

Some developer dancing:

waf clean build # force a full rebuild
waf # rebuild after an edit
waf install # (re)install

More details in the wire-cell source package README file.

Brett Viren (BNL) Wire Cell April 2, 2015 20 / 33

https://github.com/BNLIF/wire-cell

Documentation

Source Code

Names

Packages

Tests

Build

Documentation

Tour of Wire Cell

Container Data Structures (for Xin)

Brett Viren (BNL) Wire Cell April 2, 2015 21 / 33

Documentation

Documentation

• Every package has a README.org file
• Simple text markup (Org-mode) that GitHub renders.
• (note: there is much more to org-mode)

• Code is peppered with Doxygen markup
• Optional: install GraphVis to get “dot” for nice graphs.
• TODO: I will add the running of Doxygen to the build
• TODO: Put Doxygen output on the web somewhere
• TODO: Got through source and add more doc strings.

For now, run doxygen yourself:

$ doxygen docs/Doxyfile
$ firefox doxy/html/index.html

(BNL internal link to doxygen)

Brett Viren (BNL) Wire Cell April 2, 2015 22 / 33

http://orgmode.org
http://lycastus.phy.bnl.gov/~bviren/wire-cell-doxy/

Tour of Wire Cell

Source Code

Names

Packages

Tests

Build

Documentation

Tour of Wire Cell

Container Data Structures (for Xin)

Brett Viren (BNL) Wire Cell April 2, 2015 23 / 33

Tour of Wire Cell

Basic Wire and Cell

Wire
Wire geometry and numbering of one wire segment

WireSet an owning collection of wires
WireSelection a non-owning sub-set
Cell

Cell geometry and numbering of one cell.
CellSet an owning collection of cells

CellSelection and non-owning sub-set
Wire and Cell objects are static information related to the
detector and do not hold any dynamic (DAQ) data.

Brett Viren (BNL) Wire Cell April 2, 2015 24 / 33

Tour of Wire Cell

Charge and Time

Trace a starting time bin and a sequence of following
charges from an electronics channel.

TraceCollection A sequence of Trace objects
Frame a TraceCollection with an index into the external

“frame data source” (see nav below)
Slice [wire ID, charge] pairs in same time bin across a

Frame - this is what we reconstruction into Cells!

• One full channel readout (eg, MB’s 9600 time bins) can be represented by
multiple Trace objects to allow for zero-suppression / analysis thresholds.

• A Frame object effectively corresponds to an “event” (bad word!) with
the index being the ROOT TTree entry.

Brett Viren (BNL) Wire Cell April 2, 2015 25 / 33

Tour of Wire Cell

WireCellNav(igation)

GDS GeomDataSource gives information about the wire
(segments) in the detector used to produce (and
own) Wire objects.

FDS FrameDataSource provides Frame objects, expect
to write one FDS per data source type.
• WireCellSst/FrameDataSource is so far only one

SDS SliceDataSource takes any FrameDataSource and
produces slices
• One SliceDataSource covers all needs.
• Requires a GDS to resolve channel→ wire IDs

Top-level user code will interact with all three of these objects.
See wire-cell-example-loop for working example.

Brett Viren (BNL) Wire Cell April 2, 2015 26 / 33

Tour of Wire Cell

Tiling

A tiling is a class which creates and owns cells and provides
access to them and answers queries about their associations
with wires.

Tilings inherit from TilingBase and must provide:

/// Must return all wires associated with the given cell
WireCell::WireSelection wires(const WireCell::Cell& cell) const;

/// Must return all cells associated with the given wire
WireCell::CellSelection cells(const WireCell::Wire& wire) const;

/// Must the one cell associated with the collection of wires or 0.
WireCell::Cell* cell(const WireCell::WireSelection& wires) const;

Brett Viren (BNL) Wire Cell April 2, 2015 27 / 33

Tour of Wire Cell

Types of tilings

Tilings we have or will soon have∗:
TileMaker the cell making code from Michael’s CellMaker

TriangleTiling∗ special purpose exploiting MB’s symmetry
Filter tilings∗ tilings that take other tilings as input, mostly to

reduce available cells based on:
• removing chargeless wires
• ranking of cells
• info from a cell in neighboring slices
• kinematic fitters

Tilings are nodes to construct high-level process flows:
• chain individual tilings to produce final result
• supports branches, iterations, recombinations

Brett Viren (BNL) Wire Cell April 2, 2015 28 / 33

Container Data Structures (for Xin)

Source Code

Names

Packages

Tests

Build

Documentation

Tour of Wire Cell

Container Data Structures (for Xin)

Brett Viren (BNL) Wire Cell April 2, 2015 29 / 33

Container Data Structures (for Xin)

Vector

Used best for collections where order is determined at fill time.
• “Array” type behavior
• Cheap random access, expensive insertion

#include <vector>
int main() {

int dat[] = {5, 10, 15};
std::vector<int> vec(dat, dat+3);
vec.push_back(42); // append
for (std::size_t ind=0; ind < vec.size(); ++ind) {

vec[ind] *= ind+1;
}
return 0;

}

Brett Viren (BNL) Wire Cell April 2, 2015 30 / 33

Container Data Structures (for Xin)

List
Used best for collections where order may be determined later
• “Doubly linked list” behavior
• Cheap insertion, no random access (O(N))
• Reverse iteration, insertion, erasure

#include <list>
#include <iostream>
int main() {

typedef std::list<int> MyList;
int dat[] = { 1,2,3 };
MyList lst(dat,dat+3);
lst.push_front(24); // prepend, also pop_front()
lst.push_back(42); // append, also pop_back()
MyList::iterator it, done = lst.end();
for (it = lst.begin(); it != done; ++it) {

*it *= 100;
std::cout << *it << std::endl;

}
return 0;

}

Brett Viren (BNL) Wire Cell April 2, 2015 31 / 33

Container Data Structures (for Xin)

Map
Used to associate one type to another.
• std::map ordered by key (O(N) insert/access)
• std::unordered map (O(1) insert/access)
• Each element is a std::pair<type1,type2>

#include <map>
#include <iostream>
int main()
{

typedef std::map<int,float> SparseHist; // save typing
SparseHist sh;
sh[2] = 20;
sh[4] += 2; // default value springs into life
SparseHist::iterator it, done = sh.end();
for (it = sh.begin(); it != done; ++it) {

std::cout << "bin #" << it->first
<< " content:" << it->second << std::endl;

}
}

Brett Viren (BNL) Wire Cell April 2, 2015 32 / 33

Container Data Structures (for Xin)

Graph

• Nodes connected by Edges
• Directed Acyclic Graphs (DAG)

• Edge directs from tail to head node, no loops
• If node has zero or one “input edge”⇒ “tree”

• Undirected Cyclic Graphs (meshes)
• Express connectivity with no direction, cycles allowed.
• Wires and Cells can form a duel-node type mesh
• Wire-Cell/Cell-Wire but not Wire-Wire/Cell-Cell
• Walk mesh to find any wire in a cell and vice versa, cell given

three wires, connecting wires given a set of cells

// WireCellMap.h
typedef std::map<const Cell*, WireSelection> CellMap;
typedef std::map<const Wire*, CellSelection> WireMap;

Brett Viren (BNL) Wire Cell April 2, 2015 33 / 33

C W

W

W

C W

C

C

	Source Code
	Names
	Packages
	Tests
	Build
	Documentation
	Tour of Wire Cell
	Container Data Structures (for Xin)

